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Appendix A
Exponentials and logarithms

Raising 10 to different powers is a familiar operation. For example,
10! =10, 10% = 100, 10% = 1000, ---

Mathematically this is regarded as a rule for getting from the power (1, 2,
3, etc.) to the value of 10 raised to that power (10, 100, 1000, etc.). The
power is often referred to as the ezponent and 10 raised to a power is called
an exponential with base 10.

Raising 10 to a power can be extended to cover fractional powers using
the convention that 10% stands for the square root of 10, 103 stands for the
cube root of 10, and so on. The rule can also be extended to cover negative
powers using the convention that 10~! stands for 1/10 = 0.1. Table A.1
shows the rule for obtaining 10% from z for a variety of values of z.

Now suppose that we wish to go the other way and, starting with a
value of 10%, find the value of z. For example, starting with 1000 gives
z = 3, while starting with 0.1 gives x = —1. Starting with any positive
number y, the value of z which makes 10” = y is called the logarithm of y
with the base 10 and is written log,¢(y). Taking logarithms with base 10
is the inverse operation to exponentiation with base 10. Thus 10° = 1000
and log,,(1000) = 3.

Table A.1. Rules for finding 10* from z

y = 10°
1
10
100
1000
0.1
0.01
0.001
V10
J10

!
W-NI- G2 D = W N = OIR



352 EXPONENTIALS AND LOGARITHMS

Table A.2. Multiplication using logarithms

Number Logarithm
72 — 0.8573

16.9 — 1.2279
121.7 «— 2.0852

Logarithms were introduced as a computational device in the seven-
teenth century to avoid multiplication and division. Tables were prepared
so that the logarithm of any number could be looked up. Similarly, tables
of exponentials were prepared so that logarithms could be converted back
to the original numbers. These tables of exponentials were called antiloga-
rithms. The use of logarithms to multiply 7.2 by 16.9 is shown in Table A.2.
Arrows from left to right refer to looking up logarithms while arrows from
right to left refer to looking up antilogarithms (exponentiation). The result
line follows from addition on the logarithmic (right-hand) side or multipli-
cation on the exponential (left-hand) side. The widespread availability of
cheap electronic calculators means that nobody now uses logarithms for
multiplication or division. However, their mathematical property of con-
verting multiplication to addition, embodied in

log(7.2 x 16.9) = log(7.2) + log(16.9)
is still very useful. Another useful property which follows from this is that
log(7.2%) = 2 x log(7.2)

log(7.2%) = 3 x log(7.2)

and so on.

Raising 2 to a power is called exponentiation with base 2. The inverse
process produces logarithms to the base 2 and these are written logy(y).
Both exponentials and logarithms can be defined with respect to any base.
Fig. A.1 shows plots of the exponential functions 107, 3%, €%, and 2%, where
the symbol e represents the number 2.71828183. The number e is chosen
so that the tangent to the plot of e* versus z drawn at £ = 0 has a slope of
exactly 1 (shown by the broken line). It follows that when z is very small,

141z,

and, therefore,
log, (1 + z) =~ .

Logarithms to the base e are referred to as natural logarithms, and it is
‘the above property that makes them ‘natural’. The natural logarithm
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Fig. A.1. Plots of the function y = c*

function is sometimes written as In(y), but in this book we shall always use
logarithms to the base e, and write them simply as log(y). We also write
the exponential function with base e as exp(z). Note, however, that many

" electronic calculators assign an entirely different meaning to a key marked

ezp.
The logarithms of the same number, using different bases, are related
by a simple constant multiplier. For example

log, (y) = log;(y) x 2.3026
where 2.3026 = log,(10). Similarly

logy(y) = logyo(y) x 3.3219

where 3.3219 = log,(10).



Appendix B
*] Some basic calculus

The gradient of the graph of y versus z measures the rate at which y is
" increasing (or decreasing) at any point on the graph. It is most easily
defined for a straight line graph, such as the one in Fig. B.1. In this case
the rate of increase or decrease is the same at any point on the graph, and is
measured by the ratio of the rise to the run. For a straight line relationship
in which y decreases with x the gradient is negative. Gradients have units
equal to those of y/z. The central idea of calculus is that over a small run
any curve is approximately a straight line and the gradient of the curve at
any point in the run is approximately equal to the gradient of this line.
Differential calculus consists of a number of simple rules which are used
to evaluate gradients of curves for which the y co-ordinate of any point on
the curve is given by some function of the z co-ordinate. The most useful
of these are shown in Table B.1. A further very important rule is that the
gradient of a function constructed as the sum of two simpler functions is

4

rise

run

Fig. B.1. Gradient_ of a straight line graph
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Table B.1. Gradients of some simple functions of =

Function Gradient
¢ (constant) 0

T 1

- -1

ez ¢
(z)? 2z
(=)™ m(z)™!
=@ -0 =g
exp(z) exp(z)
log() :
(c+ x)2 2c+z
(c—x)? —2(c—x)
log(c + x) =z
log(c — z) =

the sum of the gradients of the constituent functions so that, for example,
the gradient of z + log(z) is 1 4+ 1/z.

The use of these rules is now illustrated by finding the gradient of the
log likelihood for a rate A, based on D cases and Y person years. The log
likelihood for A is

Dlog()) — Y.

From Table B.1 the gradient of log()) is 1/X and the gradient of X is 1.
Hence the gradient of the log likelihood is

D

A Y
The maximum value of the log likelihood occurs when the gradient is zero,
that is, when A = D/Y, so the most likely value of X is D/Y.

The curvature of the log likelihood curve at the peak is important in
determining the range of supported values. A highly curved peak corre-
sponds to a narrow range. The curvature at a point on a curve is a measure
of how fast the gradient is changing from one value of x to the next; if the
gradient is changing quickly then the curvature is high, while if the gradient

" is changing slowly the curvature is low. For log likelihood curves the gra-

dient changes from a positive quantity (on the left) to a negative quantity

.. (on the right) so the gradient decreases as z increases and the curvature is

negative.

The curvature of a curve, at a point, is defined.to be the rate of change
of the gradient of the curve at that point. The way that Table B.1 can
be used to find curvature is now illustrated using the log likelihood for X
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again. The gradient of the log likelihood at any value of A has been shown
to be D

5 -Y

From Table B.1 the gradient of a constant is zero and the gradient of 1/\
is —1/())?, so the curvature of the log likelihood at any value of X is

D
—W'

Appendix C
Approximate profile likelihoods

This appendix describes the mathematics underlying Gaussian approxima-
tion of profile log likelihoods.

C.1 The difference between two parameters

We shall start with an important special case. Consider a model with
two parameters, 8; and By, and suppose that our main interest is in the
difference

v = b1 — Bo.

We shall further assume that the log likelihoods for 51 and By are based
on two independent sets of data so that the total log likelihood is the sum
of the two separate log likelihoods.

Fig. C.1 illustrates the construction of the profile likelihood for 7. The
upper panel of the figure shows the total log likelihood obtained by adding
the log likelihoods for 8, and fBy. Contours are shown for log likelihood
ratios of —5,—4,...,—1. The four diagonal lines correspond to different
values of 4. For example, the top leftmost line represents values of 51, 8o
satisfying

Br—Bo=0

so that this line corresponds to v = 0. Similarly, the remaining lines
correspond to values of v of 0.5, 1.0, and 1.5 respectively. To find the
profile likelihood for ~, we find the maximum value of the log likelihood
along each of these lines. This maximum is plotted against v in the lower
panel of the figure.

The Gaussian approximation of the profile log likelihood can be ob-
tained from making use of the relationship between gradients and curva-

_tures of the total log likelihood (upper panel), and the gradient and curva-

ture of the profile log likelihood (lower panel). These relationships can be
derived using the laws of calculus but are only quoted here.

If, at the maximum of the log likelihood along the line 8, — By = v, the
gradient is G, with respect to 81 and Gy with respect to fy the gradient
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Fig. C.1. The profile log likelihood
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of the profile log likelihood at « is G, where
G =G1 = —Gy.

If Cy, Cy are the corresponding curvatures with respect to 51 and f, then
the curvature of the profile log likelihood at v is C, where '

i1 1
cC O G

From these results it follows directly that, if the most likely values of
B and By are M and M, respectively, and the corresponding standard
deviations of the estimates are S; and Sg, then the most likely value of
is
M = M, — Moy,

and the standard devié,tion of the estimate is
S = 1/(51)2 + (S0)2.

THE RATE RATIO REVISITED

As an example, we shall apply use these general rules to the problem of
estimating and testing the logarithm of the rate ratio. Let A\¢ and A; be
the two rate parameters and define

51 =log(A1), Bo = log(Mo)

then

Il

—

@]

oQ
N
>,|>,
Q| =
~—

Il
—
(o]
0Q
—
5e)
~

the log of the rate ratio.

If, in the exposed group, D; cases are observed in Y; person-years, and
in the unexposed group Dy cases are observed in Y; person-years, the total
log likelihood is

D1 log(/\l) - A1Y1 -+ Do IOg(Ao) — AoYl.
The gradients of this with respect to 81 and fp are

Gi=D; -\ Go = Do — AoYo,
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and the curvatures are
Ci=-\uY Co = —\Ys.
The most likely values for 3 and Gy are
M, =log(D1/Y1), My = log(Do/Yo)
and the corresponding standard deviations are

Sl=\/1/D1, S()=\/1/D0.

Using the rules given at the end of the last section, the Gaussian approxi-
mation for the profile log likelihood for v = log(#) has

M log(D1/Y1) — log(Do/Yo)

lo ——-—Dl/yl
g Do/Y )’

/1 1
S— D_1+D_0-

These expressions are identical to those obtained in Chapter 13.

The Wald test is also based on the Gaussian approximation shown
above. The score test is obtained from the gradient and curvature of the
profile log likelihood at the null value of the parameter, v = 0. Here \;
and Ap are equal and their most likely common value is D/Y so that the
gradients and curvatures are

and

G1 = Dy—-E; Go = Do—E()
C: = —El Co = —Ey

where By = (D/Y)Y1 and Ey = (D/Y )Y represent ‘expected’ numbers of
failures in the two groups under the null hypothesis. The score, U, is given
by either G; or —Gy (it can easily be verified that these are identical). The
score variance is minus the curvature of the profile log likelihood and, using
the relationship

1_1.1
cC ¢ G
this is
1 1\7?
Vo= (f*f)
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E1Ey
E

Since D = E, this can also be written

E Ey
V.= bpgm

and this agrees with the expression given in Chapter 13.

THE DIFFERENCE BETWEEN TWO MEANS

A second example is the difference between two mean parameters in a
Gaussian model for responses measured on a continuous metric scale. For
example, we might wish to compare blood pressure in two groups of sub-
jects. We shall let p; and po represent the mean parameters for the two
groups and assume that the standard deviation of responses about the
mean is the same in both groups, o let us say. As in Chapter 8 we shall
assume o to be a known constant although, in practice, it would also have
to be estimated from the data.

Exercise C.1. Derive expressions for the most likely value and for the standard
deviation of the estimate of the parameter
*

Y = H1 — Ho-

C.2 Weighted sums

Similar results hold for more general problems. For example, the parameter
of interest may be defined as

v = W11+ Wofo

where W; and Wy are known constants. In this case the same argument
illustrated in Fig. C.1 may be applied, but the parallel lines corresponding
to fixed values of v now have different slopes. The relationship between
gradients in the total log likelihood and the gradient of the profile likelihood

is now
G1 Gy

G = =20
W, Wy

and for the curvatures we have

1 _ (W) n (Wo)®
C Cy Cy
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These results generalize in an obvious way to a function of more than
two parameters, of the form

v=WiB +Wafo + Wafs +---

the gradient of the profile log likelihood now being

_6_ GGy _

=W, W

and its curvature

1 (W2 (Wa)? | (Ws)?
S/ i o ta o

If the most likely values of £1,8z,... are My, Ms,... with standard
deviations S, Sa, ..., then the most likely value of « is

M=W1M1+W2M2+W3M3+"-

with standard deviation

S = \/(W151)2 + (W252)2 + (W3S53)2 + - -

Solutions to the exercises

C.1 The log likelihoods for p; and po are Gaussian with most likely
values M; and My — the arithmetic means of the N; observations in the
first group and the Ny observations in the second. The corresponding
standard deviations are

o o

S) = ——, Sp= —.
YN YT N,

It follows from the results of this section that the profile log likelihood for
11 — po has most likely value M; — My and standard deviation

@2 2 _J1 . 1
N TN, VWM TN

Appendix D |
Table of the chi-squared distribution

Probability Degrees of freedom, v

p 1 2 3 4 5

0.50 0.455 1.386  2.366  3.357  4.351
0.25 1.323 2.773 4.108 5385  6.626
0.10 2706  4.605 6.251  7.779 9.2367
0.075 3.170 5181  6.905 8.496 10.008
0.050 3.841 5.991 7.815 9.488 11.070
0.025 5.024 7.378 9.348 11.143 12.833
0.0100 6.635 9.210 11.345 13.277 15.086
0.0075 7.149 9.78 11.966 13.937 15.780
0.0050 7.879 10.597 12.838 14.860 16.750
0.0025 9.141 11.983 14.320 16.424 18.386
0.0010 10.828 13.816 16.266 18.467 20.515
Probability Degrees of freedom, v

p 6 7 8 9 10
0.50 5348 6.346 7.344  8.343  9.342
0.25 7.841 9.037 10.219 11.389 12.549
0.10 10.645 12.017 13.362 14.684 15.987
0.075 11.466 12.883 14.270 15.631 16.971
0.050 12.592 14.067 15.507 16.919 18.307
0.025 14.449 16.013 17.535 19.023 20.483
0.0100 16.812 18.475 20.090 21.666 23.209
0.0075 17.537 19.229 20.870 22.471 24.038
0.0050 18.548 20.278 21.955 23.589 25.188
0.0025 20.249 22.040 23.774 25462 27.112
0.0010 22.458 24.322 26.124 27.877 29.588

The above tables give the value that a variable, distributed according to the chi-squared

~distribution with v degrees of freedom, will exceed with probability p. For example, a

variable distributed according to the chi-squared distribution with one degree of freedom
has a probability of p = 0.1 of exceeding the value 2.706.
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Aalen—Nelson estimate, 48
additive model, 224, 282

for case-control study, 285
affected sib pair method, 97
age-period-cohort model, 315
age-specific rate, 53
Akaike’s information criterion, 272
aliasing, 313
analysis of variance, 339

band (time), 27
baseline rates, 299, 304
Bayes’ rule, 12
and degree of belief, 92
Bayesian theory of statistics, 22, 92, 117
binary data, 5
binary probability model, 6, 18
for case-control study, 159
sequence of, 27
binomial distribution, 112, 129

case-cohort study, 162, 331
case-control study, 153
frequency matched, 178
geographically based, 163
group matched, 178
hospital-based, 163
individually matched, 178, 186
neighbourhood matched, 183
size of, 210
case/control ratio, 158
cause-specific rate, 65
cause-specific risk, 63
censoring, 5, 24, 63
non-informative, 68
chi-squared distribution, 71
click (time}, 42, 146
cohort study, 5
size of, 210
collinearity, 247
competing causes, 65
*-complementary log-log, 235
conditional likelihood, 128
conditional logistic regression, 176, 290
confidence interval, 21, 90
exact, 116, 129, 172
confounding, 53, 133, 264, 272
coverage probability, 89, 99

Cox’s regression analysis, 298
credible interval, 22, 94
cross-validation, 272

cumulative failure rate, 46, 131
cumulative survival probability, 29, 46
curvature, 84, 354, 359

degree of belief, 21, 92

posterior, 93

prior, 93
departures from linearity, 252
deterministic model, 3
deviance, 242
differential misclassification, 277
discriminating between models, 284
dose-response relationship, 249

effect modification, 276

endogenous variable, 276

error factor, 82

exact confidence interval, 116

exogenous variable, 276

expected number of cases, 56, 58, 106, 115,
148, 205

experiment of nature, 133, 272

explanation, 271

exposure, 10, 272

exposure window, 182

F distribution, 342

F ratio tests, 342

factor, 224

factorial, 115

failure, 6

first derivative, 84

Fisher’s exact test, 172

force of mortality, 40

frequency record, 225, 227, 346
frequentist theory of statistics, 21, 89, 173

Gaussian probability model, 71
Gaussian regression, 336
genotype, 13

goodness-of-fit tests, 246
gradient, 84, 854, 357

haplotype, 13
marker, 96
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hazard rate, 40
hypergeometric distribution, 170

incidence, 6
incidence density sampling, 161, 182
independence
of causes, 66
of censoring, 68
of effects, 282
statistical, 11
indicator variable, 254
individual record, 225, 227
instantaneous rate, 40
interaction, 259, 268, 276, 282
% between categorical and quantitative,
266
between confounders, 261
between exposure and confounders,
263
scale dependence, 269
iterative calculation, 144

Kaplan—Meler estimate, 35

late entry, 68, 302

least squares estimate, 338

Lexis diagram, 57, 228

life table, 27
actuarial, 27
cohort, 31
modified, 48

likelihood, 18
Bernoulli, 19
conditional, 128
hypergeometric, 171, 176, 188
partial, 801, 308, 333
Poisson, 44
profile, 124

likelihood ratio, 20

linear effect, 250

linkage, genetic, 96

lod score
and p-value, 107

log likelihood, 22, 117
approximate, 78
for cause-specific rate, 66
for rate parameter, 43

approximate, 79, 84
for risk parameter, 24
approximate, 79, 85

Gaussian, 74

log likelihood ratio, 23, 96
test, 100, 237

log rank test, 146.~
logistic regression, 176, 202, 227, 229

Mantel extension test, 203
Mantel-Cox test, 146

Mantel-Haenszel estimate
in 1:1 matched studies, 186
in 1: m matched studies, 190
in case-control studies, 178
of rate ratio, 145
Mantel-Haenszel test, 177
in 1:1 matched studies, 186
in 1: m matched studies, 190
matched sets
1:1, 292
l:m, 294
maximum likelihood estimate, 20
mean parameter, 73
difference between two, 361
measurement error
confounder, 280
exposure, 277
missing value, 226
Monte Carlo test, 99, 112
most likely value, 20
multiple regression, 336
multiplicative model, 221

nested case-control study, 162, 829
counter-matching in, 332
matching in, 332
two-stage, 334

nested models, 246

non-identifiability, 313

normal distribution, 71

null hypothesis, 96

observation time, 42, 54

Occam’s razor, 237

odds parameter, 7

odds ratio parameter, 155, 161, 166
common across strata, 175

one-sided test, 105

overmatching, 181

p-value, 99
exact, 104, 110, 129, 342
misinterpretation of, 107
one and two-sided, 105, 112
parameter, 3
corner, 220
difference between two, 130, 357
estimation, 8, 18
interaction, 240
location, 73
names, 220
nuisance, 124
null value, 96
scale, 73
person-time, 42
Poisson distribution, 115
Poisson regression, 198, 227
power of study, 206

prediction, 271

prevalence, 6, 235
in case-control studies, 164

probability
additive rule, 6
conditional, 10, 28
marginal, 11, 133
multiplicative rule, 11
subjective, 92

probability rate, 40

proband, 25

profile log likelihood, 125
approximate, 130, 357

proportional hazards model, 142, 147

quadratic curve, 74
quadratic dose-response, 253
Quetelet’s index, 271

rare disease assumption, 8, 161
rate difference parameter, 129, 130, 224
rate parameter, 40

relationship to risk, 46
rate ratio parameter, 124, 161

common across strata, 142
recall bias, 163
reference category, 160
reference rates, 58, 106, 147
regression model, 217
reparametrization, 4, 124
residual standard deviation, 337
residual sum of squares, 338
residual variance, 337
risk, 235
risk parameter, 7

relationship to rate, 46
risk ratio parameter, 13, 161
risk score, 271
risk set, 300

sampling risk sets, 330
saturated model, 242, 339
score, 103
score test, 100, 102
score variance, 103
screening
predictive value, 13
sensitivity, 13
sojourn time, 323
specificity, 13
second derivative, 84
selection bias, 162, 183, 309
due to censoring, 68
due to late entry, 68
significance test, 96, 99
standard deviation parameter, 73
standardization
direct, 136
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indirect, 148
standardized mortality ratio, 60, 148
comparison of, 149
standardized rate, 136
comparison of, 139, 149
stepwise regression, 271
stochastic model, 4
stratification, 135
in case-control studies, 175, 203
in cohort studies, 141, 200
study base, 153
support, 18, 117
supported range, 20
approximate, 79
for odds parameter
approximate, 83
for rate parameter, 44
approximate, 80, 82
for risk parameter, 21
approximate, 79, 83
survival curve, 32
synergism, 282

time band, 227

time scale, 59, 309

transformation of parameter, 80, 86
trend test, 249

trend, testing for, 197, 252

vague prior, 117

variable, 224
binary, 225
categorical, 224
derived, 225
explanatory, 219, 272
levels, 224
quantitative, 224
time-varying, 307

variable selection strategy, 271

variance parameter, 73

Wald test, 100, 101, 237





